Preview

Сибирский онкологический журнал

Расширенный поиск

ОСОБЕННОСТИ КАНЦЕРОГЕНЕЗА АДЕНОКАРЦИНОМЫ ТОЛСТОЙ КИШКИ

Аннотация

Рак толстой кишки – одна из наиболее распространенных форм злокачественных опухолей, занимающая лидирующие в мире позиции по летальности от рака. Выделяют четыре основных пути канцерогенеза аденокарциномы толстой кишки: трансформация аденомы в карциному; HNPCC (наследственный неполипозный рак толстой кишки); развитие рака «de novo»; трансформация хронического колита. Во всех из них, кроме синдрома Линча, все больше внимания уделяют стволовым ткань-коммитированным клеткам как мишеням мутаций и источнику злокачественных опухолей. Впоследствии возникающие из них стволовые раковые клетки рассматривают как причину химиорезистентности опухолей, развития рецидивов и метастазов. Таким образом, изучение данной популяции клеток может кардинально изменить подходы к лечению пациентов с аденокарциномой толстой кишки.

Об авторах

Г. А. Раскин
Российский научный центр радиологии и хирургических технологий, Санкт-Петербург; Санкт-Петербургский государственный университет, медицинский факультет, г. Санкт-Петербург
Россия

Раскин Григорий Александрович, кандидат медицинских наук, ведущий научный сотрудник, Российский научный центр радиологии и хирургических технологий (г. Санкт-Петербург). 

E-mail: rasking@list.ru. SPIN-код: 4569-9756



С. В. Петров
Казанский государственный медицинский университет
Россия

Петров Семен Венедиктович, доктор медицинских наук, профессор кафедры патологии. 



Р. В. Орлова
Российский научный центр радиологии и хирургических технологий, Санкт-Петербург; Санкт-Петербургский государственный университет, медицинский факультет, г. Санкт-Петербург
Россия

Орлова Рашида Вахидовна, доктор медицинских наук, профессор, заведующая кафедрой онкологии медицинского факультета,Санкт-Петербургский государственный университет.

SPIN-код: 9932-6170




Список литературы

1. Давыдов М.И., Аксель Е.М. Смертность от злокачественных новообразований // Вестник РОНЦ им. Н.Н. Блохина РАМН. 2010. № 2. С. 87–117.

2. Пожарисский К.М. Экспериментальный анализ морфогенеза и патогенеза эпителиальных опухолей кишечника: Дис. … д-ра мед. наук. Л., 1978. 402 с.

3. Agoff S.N., Brentnall T.A., Crispin D.A., Taylor S.L., Raaka S., Haggitt R.C., Reed M.W., Afonina I.A., Rabinovitch P.S., Stevens A.C., Feng Z., Bronner M.P. The role of cyclooxygenase 2 in ulcerative colitis-associated neoplasia // Am. J. Pathol. 2000. Vol. 157 (3). P. 737–745.

4. Bosman F.T., Carneiro F., Hruban R.H. at al. WHO classification of tumors the digestive system. IARC: Lyon, 2010. 417 p.

5. Boyle P., Levin B. (eds.) World Cancer Report. IARC: Lyon, 2008.

6. Buczacki S., Davies R.J., Winton D.J. Stem cells, quiescence and rectal carcinoma: An unexplored relationship and potential therapeutic target // Br. J. Cancer. 2011. Vol. 105 (9). P.1253–1259. doi: 10.1038/bjc.2011.362.

7. Cheng H., Leblond C.P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types // Am. J. Anat. 1974. Vol. 141 (4). P. 537–561.

8. Craft C.F., Mendelsohn G., Cooper H.S., Yardley J.H. Colonic “precancer” in Crohn’s disease // Gastroenterology. 1981. Vol. 80 (3). P. 578–584.

9. Ferlay J., Shin H.R., Bray F. et al. GLOBOCAN 2012 v2.0, Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 10 [Электронный ресурс] // Lyon, France: International Agency for Research on Cancer; 2012. Режим доступа: http://globocan.iarc.fr, accessed on day/month/year.

10. Fodde R., Smits R., Clevers H. APC, signal transduction and genetic instability in colorectal cancer // Nat. Rev. Cancer. 2001. Vol. 1 (1). P. 55–67.

11. Grady W.M., Markowitz S.D. Genetic and epigenetic alterations in colon cancer // Annu Rev. Genomics Hum. Genet. 2002. Vol. 3. P. 101–128.

12. Greenstein A.J. Cancer in inflammatory bowel disease // Mt. Sinai. J. Med. 2000. Vol. 67 (3). P. 227–240.

13. Gupta P.B., Fillmore C.M., Jiang G., Shapira S.D., Tao K., Kuperwasser C., Lander E.S. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells // Cell. 2011. Vol. 146 (4). P. 633–644. doi: 10.1016/j.cell.2011.07.026.

14. Haydon A.M., Jass J.R. Emerging pathways in colorectal-cancer development // Lancet Oncol. 2002. Vol. 3. P. 83–88.

15. Hussain S.P., Amstad P., Raja K., Ambs S., Nagashima M., Bennett W.P., Shields P.G., Ham A.J., Swenberg J.A., Marrogi A.J., Harris C.C. Increased p53 mutation load in noncancerous colon tissue from ulcerative colitis: A cancer-prone chronic inflammatory disease // Cancer Res. 2000. Vol. 60 (13). P. 3333–3337.

16. Ichii S., Horii A., Nakatsuru S. Inactivation of both APC alleles in an early stage of colon adenomas in a patient with familial adenomatous polyposis (FAP) // Hum. Mol. Genet. 1992. Vol. 1. P. 387–390.

17. Ilyas M. Wnt signalling and the mechanistic basis of tumour development // J. Pathol. 2005. Vol. 205 (2). P. 130–144.

18. Kashida H., Kudo S.E. Early colorectal cancer: concept, diagnosis, and management // Int. J. Clin. Oncol. 2006. Vol. 11 (1). P. 1–8.

19. Khokhlatchev A., Rabizadeh S., Xavier R., Nedwidek M., Chen T., Zhang X.F., Seed B., Avruch J. Identification of a novel Ras-regulated proapoptotic pathway // Curr. Biol. 2002. Vol. 12 (4). P. 253–265.

20. Kim M., Miyamoto S., Yasui Y., Oyama T., Murakami A., Tanaka T. Zerumbone, a tropical ginger sesquiterpene, inhibits colon and lung carcinogenesis in mice // Int. J. Cancer. 2009. Vol. 124 (2). P. 264–271. doi: 10.1002/ijc.23923.

21. Kinzler K.W., Vogelstein B. Lessons from hereditary colorectal cancer // Cell. 1996. Vol. 87. P. 159–170.

22. Konishi F., Morson B.C. Pathology of colorectal adenomas: A colonoscopic survey // J. Clin. Pathol. 1982. Vol. 35. P. 830–841.

23. Koo L.C., Mang O.W., Ho J.H. An ecological study of trends in cancer incidence and dietary changes in Hong Kong // Nutr. Cancer. 1997. Vol. 28. P. 289–301.

24. Kornbluth A., Sachar D.B. Ulcerative colitis practice guidelines in adults: American College of Gastroenterology, Practice Parameters Committee // Am. J. Gastroenterol. 1997. Vol. 92. P. 204–211.

25. Kumar A., Takada Y., Boriek A.M., Aggarwal B.B. Nuclear factorkappaB: Its role in health and disease // J. Mol. Med. 2004. Vol. 82 (7). P. 434–448.

26. Kuramoto S., Oohara T. Flat early cancers of the large intestine // Cancer. 1989. Vol. 64. P. 950–955.

27. Kuramoto S., Oohara T. Minute cancers arising de novo in the human large intestine // Cancer. 1988. Vol. 61. P. 829–834.

28. Levine A.J. Р53, the cellular gatekeeper for growth and division // Cell. 1997. Vol. 88. P. 323–331.

29. Levin B., Lieberman D.A., McFarland B., Andrews K.S., Brooks D., Bond J., Dash C., Giardiello F.M., Glick S., Johnson D., Johnson C.D., Levin T.R., Pickhardt P.J., Rex D.K., Smith R.A., Thorson A., Winawer S.J. Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology // Gastroenterology. 2008. Vol. 134 (5). P. 1570–1595. doi: 10.1053/j.gastro.2008.02.002.

30. Li L., Clevers H. Coexistence of quiescent and active adult stem cells in mammals // Science. 2010. Vol. 327 (5965). P. 542–545. doi: 10.1126/science.1180794.

31. Markowitz S., Wang J., Myeroff L., Parsons R., Sun L., Lutterbaugh J., Fan R.S., Zborowska E., Kinzler K.W., Vogelstein B. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability // Science. 1995. Vol. 268 (5215). P. 1336–1338.

32. Montgomery R.K., Carlone D.L., Richmond L.A., Farilla L., Kranendonk M.E., Henderson D.E., Baffour-Awuah N.Y., Ambruzs D.M., Fogli L.K., Algra S., Breault D.T. Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells // Proc. Natl Acad. Sci. USA. 2011. Vol. 108 (1). P.179–184. doi: 10.1073/ pnas.1013004108.

33. Miyamoto S., Epifano F., Curini M., Genovese S., Kim M., Ishigamori-Suzuki R., Yasui Y., Sugie S., Tanaka T. A novel prodrug of 4’-geranyloxy-ferulic acid suppresses colitis-related colon carcinogenesis in mice // Nutr. Cancer. 2008. Vol. 60 (5). P. 675–684. doi: 10.1080/01635580802008286.

34. Okayasu I. Development of ulcerative colitis and its associated colorectal neoplasia as a model of the organ-specific chronic inflammationcarcinoma sequence // Pathol. Int. 2012. Vol. 62 (6). P. 368–380. doi: 10.1111/j.1440-1827.2012.02807.x.

35. Peltomaki P., Vasen H.F. Mutations predisposing to hereditary nonpolyposis colorectal cancer: database and results of a collaborative study: The International Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer // Gastroenterology. 1997. Vol.113. P.1146–1158.

36. Pierdomenico M., Negroni A., Stronati L., Vitali R., Prete E., Bertin J., Gough P.J., Aloi M., Cucchiara S. Necroptosis is active in children with inflammatory bowel disease and contributes to heighten intestinal inflammation // Am. J. Gastroenterol. 2014. Vol. 109 (2). P. 279–287. doi: 10.1038/ajg.2013.403.

37. Potten C.S., Gandara R., Mahida Y.R., Loeffler M., Wright N.A. The stem cells of small intestinal crypts: where are they? // Cell Prolif. 2009. Vol. 42 (6). P. 731–750. doi: 10.1111/j.1365-2184.2009.00642.x.

38. Powell S.M., Zilz N., Beazer-Barclay Y., Bryan T.M., Hamilton S.R., Thibodeau S.N., Vogelstein B., Kinzler K.W. APC mutations occur early during colorectal tumorigenesis // Nature. 1992. Vol. 359 (6392). P. 235–237.

39. Rampino N., Yamamoto H., Ionov Y., Li Y., Sawai H., Reed J.C., Perucho M. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype // Science. 1997. Vol. 275 (5302). P. 967–969.

40. Sangiorgi E., Capecchi M.R. Bmi1 is expressed in vivo in intestinal stem cells // Nature Genet. 2008. Vol. 40 (7). P. 915–920. doi: 10.1038/ng.165.

41. Sato T., van Es J.H., Snippert H.J., Stange D.E., Vries R.G., van den Born M., Barker N., Shroyer N.F., van de Wetering M., Clevers H. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts // Nature. 2011. Vol. 469 (7330). P. 415–418. doi: 10.1038/nature09637.

42. Shimoda T., Ikegami M., Fujisaki J., Matsui T., Aizawa S., Ishikawa E. Early colorectal carcinoma with special reference to its development de novo // Cancer. 1989. Vol. 64 (5). P. 1138–1146.

43. Sieber O.M., Tomlinson I.P., Lamlum H. The adenomatous polyposis coli (APC) tumour suppressor – genetics function and disease // Mol. Med. Today. 2000. Vol. 6. P. 462–469.

44. Smith A.J., Stern H.S., Penner M., Hay K., Mitri A., Bapat B.V., Gallinger S. Somatic APC and K-ras codon 12 mutations in aberrant crypt foci from human colons // Cancer Res. 1994. Vol. 54 (21). P. 5527–5530.

45. Soliman A.S., Bondy M.L., Raouf A.A., Makram M.A., Johnston D.A., Levin B. Cancer mortality in Menofeia, Egypt: comparison with US mortality rates // Cancer Causes Control. 1999. Vol. 10 (5). P. 349–354.

46. Souza R.F., Appel R., Yin J. Microsatellite instability in the insulinlike growth factor II receptor gene in gastrointestinal tumours // Nat. Genet. 1996. Vol. 14. P. 255–257.

47. Stallmach A., Giese T., Schmidt C., Ludwig B., Mueller-Molaian I., Meuer S.C. Cytokine/chemokine transcript profiles reflect mucosal inflammation in Crohn’s disease // Int. J. Colorectal Dis. 2004. Vol. 19 (4). P. 308–315.

48. Takahashi M., Wakabayashi K. Gene mutations and altered gene expression in azoxymethane-induced colon carcinogenesis in rodents // Cancer Sci. 2004. Vol. 95. P. 475–480.

49. Takahashi H., Ishii H., Nishida N., Takemasa I., Mizushima T., Ikeda M., Yokobori T., Mimori K., Yamamoto H., Sekimoto M., Doki Y., Mori M. Significance of Lgr5(+ve) cancer stem cells in the colon and rectum // Ann. Surg. Oncol. 2011. Vol. 18 (4). P. 1166–1174. doi: 10.1245/s10434-010-1373-9.

50. Takeda K., Kinoshita I., Shimizu Y., Matsuno Y., Shichinohe T., Dosaka-Akita H. Expression of LGR5, an intestinal stem cell marker, during each stage of colorectal tumorogenesis // Anticancer Res. 2011. Vol. 31 (1). P. 263–270.

51. Tanaka T. Colorectal carcinogenesis: review of human and experimental animal studies // J. Carcinog. 2009. Vol. 8. P. 5–15.

52. Tanaka T., Kohno H., Suzuki R. A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate // Cancer Sci. 2003. Vol. 94. P. 965–973.

53. Tanaka T., Oyama T., Yasui Y. Dietary supplements and colorectal cancer // Curr. Nuetraceut. Res. 2008. Vol. 6. P. 165–188.

54. Tanaka T., Yasui Y., Ishigamori-Suzuki R., Oyama T. Citrus compounds inhibit inflammation – and obesity-related colon carcinogenesis in mice // Nutr. Cancer. 2008. Vol. 60. Suppl. 1. P. 70–80. doi: 10.1080/01635580802381253.

55. Tazawa H., Kawaguchi T., Kobayashi T., Kuramitsu Y., Wada S., Satomi Y., Nishino H., Kobayashi M., Kanda Y., Osaki M., Kitagawa T., Hosokawa M., Okada F. Chronic inflammation-derived nitric oxide causes conversion of human colonic adenoma cells into adenocarcinoma cells // Exp. Cell Res. 2013. Vol. 319 (18). P. 2835–2844. doi: 10.1016/j.yexcr.2013.08.006.

56. Tetsu O., McCormick K. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells // Nature. 1999. Vol. 398. P. 422–426.

57. Tian H., Biehs B., Warming S., Leong K.G., Rangell L., Klein O.D., de Sauvage F.J. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable // Nature. 2011. Vol. 478 (7368). P. 255–259. doi: 10.1038/nature10408.

58. Vermeulen L., De Sousa E., Melo F., van der Heijden F., Cameron K., de Jong J.H., Borovski T., Tuynman J.B., Todaro M., Merz C., Rodermond H., Sprick M.R., Kemper K., Richel D.J., Stassi G., Medema J.P. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment // Nat. Cell Biol. 2010. Vol. 12 (5). P. 468–476. doi: 10.1038/ncb2048.

59. Vogelstein B., Fearon E.R., Hamilton S.R., Kern S.E., Preisinger A.C., Leppert M., Nakamura Y., White R., Smits A.M., Bos J.L. Genetic alterations during colorectal-tumor development // N. Engl. J. Med. 1988. Vol. 319 (9). P. 525–532.

60. Vogelstein B., Lane D., Levine A.J. Surfing the p53 network // Nature. 2000. Vol. 408. P. 307–310.

61. Vousden K.H., Lu X. Live or let die: the cell’s response to p53 // Nat. Rev. Cancer. 2002. Vol. 2. P. 594–604.

62. Warthin A.S. Heredity with referance to carcinoma // Arch. Intern. Med. 1913. Vol. 12. P. 546–555.

63. Westphalen C.B., Asfaha S., Hayakawa Y., Takemoto Y., Lukin D.J., Nuber A.H., Brandtner A., Setlik W., Remotti H., Muley A., Chen X., May R., Houchen C.W., Fox J.G., Gershon M.D., Quante M., Wang T.C. Long-lived intestinal tuft cells serve as colon cancer-initiating cells // J. Clin. Invest. 2014. Vol. 124 (3). P. 1283–1295.

64. Yoshitaka T., Matsubara N., Ikeda M., Tanino M., Hanafusa H., Tanaka N., Shimizu K. Mutations of E2F-4 trinucleotide repeats in colorectal cancer with microsatellite instability // Biochem. Biophys. Res. Commun. 1996. Vol. 227 (2). P. 553–557.


Рецензия

Для цитирования:


Раскин Г.А., Петров С.В., Орлова Р.В. ОСОБЕННОСТИ КАНЦЕРОГЕНЕЗА АДЕНОКАРЦИНОМЫ ТОЛСТОЙ КИШКИ. Сибирский онкологический журнал. 2015;1(4):73-79.

For citation:


Raskin G.A., Petrov S.V., Orlova R.V. SPECIAL FEATURES OF CARCINOGENESIS OF COLON ADENOCARCINOMA. Siberian journal of oncology. 2015;1(4):73-79. (In Russ.)

Просмотров: 1102


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)