Интерферон-γ и опухолевый рост
https://doi.org/10.21294/1814-4861-2023-22-4-118-127
Аннотация
Цель исследования – проанализировать опубликованные данные о механизмах действия интерферона гамма (IFN-γ) при опухолевом росте и оценить возможности его применения для лечения солидных опухолей.
Материал и методы. По теме найдено более 200 зарубежных и российских публикаций, представленных в базах данных Scopus, Pubmed, eLibrary и других; ключевые слова поиска: интерферон гамма, опухолевый рост, терапия рака. В данный обзор включено 54 работы.
Результаты. IFN-γ – плейотропный цитокин, обладающий противовирусной, противоопухолевой и иммуномодулирующей функциями и играющий важную роль в координации врожденного и адаптивного иммунного ответа. Успешность применения в лечении злокачественных опухолей иммуноонкологических препаратов и химиотерапии зависит, в том числе, от стимулирования выработки и адекватной передачи сигналов IFN-γ. Подавление и потеря рецептора IFN-γ и нижестоящих сигнальных медиаторов, амплификация молекул, ингибирующих сигнальный путь IFN-γ, являются обычными механизмами ускользания опухолевых клеток от иммунной системы. Развитие злокачественных процессов сопровождается изменением (чаще снижением), секреции IFN-γ, что привлекает внимание исследователей к его экзогенному введению. Определение сигнатуры IFN-γ может являться прогностическим маркером клинического ответа на противоопухолевую лекарственную терапию. Противоопухолевые свойства IFN-γ во многом дозозависимы, что наглядно показано в клинических и экспериментальных исследованиях. Низкие дозы препарата чаще способствуют росту опухоли, напротив, использование высоких доз обычно сопровождается противоопухолевым действием. IFN-γ или его индукторы остаются многообещающими агентами для терапии злокачественных новообразований. Комбинаторные стратегии с включением IFN-γ могут быть рациональным вариантом для преодоления резистентности опухолей к блокаде иммунных контрольных точек.
Заключение. Необходимо продолжать фундаментальные и прикладные исследования по изучению возможностей применения интерферона гамма в качестве лечебного агента при опухолевом росте.
Об авторах
А. Л. ИлюшинРоссия
Илюшин Андрей Леонидович, главный врач,
125047, г. Москва, ул. Фадеева, 4А
И. В. Богдашин
Россия
Богдашин Игорь Викторович, кандидат медицинских наук, врач-аллерголог-иммунолог
644041, г. Омск, ул. Кирова, 5 «А»
А. З. Алексанян
Россия
Алексанян Алексан Завенович, доктор медицинских наук, врач-онколог
125047, г. Москва, ул. Фадеева, 4А
В. В. Новиков
Россия
Новиков Виктор Владимирович, доктор биологических наук, профессор кафедры молекулярной биологии и иммунопатологии; заведующий лабораторией иммунохимии,
Author ID (Scopus): 7402005487.
603950, г. Нижний Новгород, пр. Гагарина, 23;
603950, г. Нижний Новгород, ул. Малая Ямская, 71
Л. А. Ашрафян
Россия
Ашрафян Левон Андреевич, доктор медицинских наук, профессор, академик РАН, директор института онкогинекологии и маммологии, вице-президент; заместитель директора
125047, г. Москва, ул. Фадеева, 4А;
117198, г. Москва, ул. Академика Опарина, 4
Список литературы
1. Mandai M., Hamanishi J., Abiko K., Matsumura N., Baba T., Konishi I. Dual Faces of IFNγ in Cancer Progression: A Role of PD-L1 Induction in the Determination of Pro- and Antitumor Immunity. Clin Cancer Res. 2016; 22(10): 2329–34. doi: 10.1158/1078-0432.CCR-16-0224.
2. Mendoza J.L., Escalante N.K., Jude K.M., Sotolongo Bellon J., Su L., Horton T.M., Tsutsumi N., Berardinelli S.J., Haltiwanger R.S., Piehler J., Engleman E.G., Garcia K.C. Structure of the IFNγ receptor complex guides design of biased agonists. Nature. 2019; 567 (7746): 56–60. doi: 10.1038/s41586-019-0988-7.
3. Burke J.D., Young H.A. IFN-γ: A cytokine at the right time, is in the right place. Semin Immunol. 2019; 43. doi: 10.1016/j.smim.2019.05.002.
4. Alspach E., Lussier D.M., Schreiber R.D. Interferon γ and Its Important Roles in Promoting and Inhibiting Spontaneous and Therapeutic Cancer Immunity. Cold Spring Harb Perspect Biol. 2019; 11(3): 1–20. doi: 10.1101/cshperspect.a028480.
5. Schmiedel B.J., Singh D., Madrigal A., Valdovino-Gonzalez A.G., White B.M., Zapardiel-Gonzalo J., Ha B., Altay G., Greenbaum J.A., McVicker G., Seumois G., Rao A., Kronenberg M., Peters B., Vijayanand P. Impact of Genetic Polymorphisms on Human Immune Cell Gene Expression. Cell. 2018; 175(6): 1701–15. doi: 10.1016/j.cell.2018.10.022.
6. Negishi H., Tadatsugu T., Yanai H. The Interferon (IFN) Class of Cytokines and the IFN Regulatory Factor (IRF) Transcription Factor Family. Cold Spring Harb Perspect Biol. 2017; 10(11): 1–15. doi: 10.1101/cshperspect.a028423.
7. Jorgovanovic D., Song M., Wang L., Zhang Y. Roles of IFN-γ in tumor progression and regression: a review. Biomark Res. 2020; 8; 49. doi: 10.1186/s40364-020-00228-x.
8. Song M., Ping Y., Zhang K., Yang L., Li F., Zhang C., Cheng S., Yue D., Maimela N.R., Qu J., Liu S., Sun T., Li Z., Xia J., Zhang B., Wang L., Zhang Y. Low-Dose IFNγ Induces Tumor Cell Stemness in Tumor Microenvironment of Non-Small Cell Lung Cancer. Cancer Res. 2019; 79(14): 3737–48. doi: 10.1158/0008-5472.CAN-19-0596.
9. Zaidi M.R. The Interferon-Gamma Paradox in Cancer. J Interferon Cytokine Res. 2019; 39(1): 30–8. doi: 10.1089/jir.2018.0087.
10. Mojic M., Takeda K., Hayakawa Y. The Dark Side of IFN-γ: Its Role in Promoting Cancer Immunoevasion. Int J Mol Sci. 2018; 19(1): 89. doi: 10.3390/ijms19010089.
11. Kang K., Park S.H., Chen J., Qiao Y., Giannopoulou E., Berg K., Hanidu A., Li J., Nabozny G., Kang K., Park-Min K.H., Ivashkiv L.B. Interferon-γ Represses M2 Gene Expression in Human Macrophages by Disassembling Enhancers Bound by the Transcription Factor MAF. Immunity. 2017; 47(2): 235–50. doi: 10.1016/j.immuni.2017.07.017.
12. Bhat P., Leggatt G., Waterhouse N., Frazer I.H. Interferon-γ derived from cytotoxic lymphocytes directly enhances their motility and cytotoxicity. Cell Death Dis. 2017; 8(6). doi: 10.1038/cddis.2017.67.
13. Paul S., Chhatar S., Mishra A., Lal G. Natural killer T cell activation increases iNOS+CD206-M1 macrophage and controls the growth of solid tumor. J Immunother Canc. 2019; 7(1): 1–13. doi: 10.1186/s40425-019-0697-7.
14. Fang P., Li X., Dai J., Cole L., Camacho J.A., Zhang Y., Ji Y., Wang J., Yang X.F., Wang H. Immune cell subset diferentiation and tissue infammation. J Hematol Oncol. 2018; 11(1): 97. doi: 10.1186/s13045-018-0637-x.
15. Ni L., Lu J. Interferon gamma in cancer immunotherapy. Cancer Med. 2018; 7: 4509–16. doi:10.1002/cam4.1700.
16. Gocher A.M., Workman C.J., Vignali D.A.A. Interferon-γ: teammate or opponent in the tumour microenvironment? Nat Rev Immunol. 2022; 22(3): 158–72. doi: 10.1038/s41577-021-00566-3.
17. Ong C., Lyons A.B., Woods G.M., Flies A.S. Inducible IFN- γ expression for MHC-I upregulation in devil facial tumor cells. Front Immunol. 2019; 9: 1–9. doi: 10.3389/fmmu.2018.03117.
18. Wang Q.S., Shen S.Q., Sun H.W., Xing Z.X., Yang H.L. Interferongamma induces autophagy-associated apoptosis through in-duction of cPLA2- dependent mitochondrial ROS generation in colorectal cancer cells. Biochem Biophys Res Commun. 2018; 498(4): 1058–65. doi: 10.1016/j.bbrc.2018.03.118.
19. Spear P., Barber A., Rynda-Apple A., Sentman C.L. Chimeric antigen receptor T cells shape myeloid cell function within the tumor microenvironment through IFN-gamma and GM-CSF. J Immunol. 2012; 188: 6389‐98. doi: 10.4049/jimmunol.1103019.
20. Fang C., Weng T., Hu S., Yuan Z., Xiong H., Huang B., Cai Y., Li L., Fu X. IFN-γ-induced ER stress impairs autophagy and triggers apoptosis in lung cancer cells. Oncoimmunology. 2021; 10(1). doi: 10.1080/2162402X.2021.1962591.
21. Kammertoens T., Friese C., Arina A., Idel C., Briesemeister D., Rothe M., Ivanov A., Szymborska A., Patone G., Kunz S., Sommermeyer D., Engels B., Leisegang M., Textor A., Fehling H.J., Fruttiger M., Lohoff M., Herrmann A., Yu H., Weichselbaum R., Uckert W., Hübner N., Gerhardt H., Beule D., Schreiber H., Blankenstein T. Tumour ischaemia by interferon-γ resembles physiological blood vessel regression. Nature. 2017; 545(7652): 98–102. doi: 10.1038/nature22311.
22. Liu Y., Liang X., Yin X., Lv J., Tang K., Ma J., Ji T., Zhang H., Dong W., Jin X., Chen D., Li Y., Zhang S., Xie H.Q., Zhao B., Zhao T., Lu J., Hu Z.W., Cao X., Qin F.X., Huang B. Blockade of IDO-kynurenineAhR metabolic circuitry abrogates IFN-γ-induced immunologic dormancy of tumor-repopulating cells. Nat Commun. 2017; 8. doi: 10.1038/ncomms15207.
23. Glasner A., Levi A., Enk J., Isaacson B., Viukov S., Orlanski S., Scope A., Neuman T., Enk C.D., Hanna J.H., Sexl V., Jonjic S., Seliger B., Zitvogel L., Mandelboim O. NKp46 Receptor-Mediated Interferon-γ Production by Natural Killer Cells Increases Fibronectin 1 to Alter Tumor Architecture and Control Metastasis. Immunity. 2018; 48(1): 107–19. doi: 10.1016/j.immuni.2017.12.007. Erratum in: Immunity. 2018; 48(2): 396–8.
24. Исаева В.Г., Гривцова Л.Ю., Жовтун Л.П., Самборский С.М., Фалалеева Н.А. Противоопухолевый эффект рекомбинантного интерферона гамма в экспериментальной модели билатеральной солидной карциномы Эрлиха. Успехи молекулярной онкологии. 2022; 9(2): 111–9. doi: 10.10.17650/2313-805X-2022‑9‑2‑111‑119.
25. Kaplan D.H., Shankaran V., Dighe A.S., Stockert E., Aguet M., Old L.J., Schreiber R.D. Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA. 1998; 95(13): 7556–61. doi: 10.1073/pnas.95.13.7556.
26. Mucci A., Antonarelli G., Caserta C., Vittoria F.M., Desantis G., Pagani R., Greco Be, Casucci M., Escobar G., Passerini L., Lachmann N., Sanvito F., Barcella M., Merelli I., Naldini L., Gentner B. Myeloid cellbased delivery of IFN-γ reprograms the leukemia microenvironment and induces anti-tumoral immune responses. EMBO Mol Med. 2021; 13(10). doi: 10.15252/emmm.202013598.
27. Lo U.G., Pong R.C., Yang D., Gandee L., Hernandez E., Dang A., Lin C.J., Santoyo J., Ma S., Sonavane R., Huang J., Tseng S.F., Moro L., Arbini A.A., Kapur P., Raj G.V., He D., Lai C.H., Lin H., Hsieh J.T. IFNγInduced IFIT5 Promotes Epithelial-to-Mesenchymal Transition in Prostate Cancer via miRNA Processing. Cancer Res. 2019; 79(6): 1098–112. doi: 10.1158/0008-5472.CAN-18-2207.
28. Lo U.G., Bao J., Cen J., Yeh H.C., Luo J., Tan W., Hsieh J.T. Interferon-induced IFIT5 promotes epithelial-to-mesenchymal transition leading to renal cancer invasion. Am J Clin Exp Urol. 2019; 7(1): 31–45.
29. Korentzelos D., Wells A., Clark A.M. Interferon-γ increases sensitivity to chemotherapy and provides immunotherapy targets in models of metastatic castration-resistant prostate cancer. Sci Rep. 2022; 12(1): 6657. doi: 10.1038/s41598-022-10724-9.
30. Xu Y.H., Li Z.L., Qiu S.F. IFN-γ Induces Gastric Cancer Cell Proliferation and Metastasis Through Upregulation of Integrin β3-Mediated NF-κB Signaling. Transl Oncol. 2018; 11(1): 182–92. doi: 10.1016/j.tranon.2017.11.008.
31. Dillinger B., Ahmadi-Erber S., Lau M., Hoelzl M.A., Erhart F., Juergens B., Fuchs D., Heitger A., Ladisch S., Dohnal A.M. IFN-γ and tumor gangliosides: implications for the tumor microenvironment. Cell Immunol. 2018; 325: 33–40. doi: 10.1016/j.cellimm.2018.01.014.
32. Tong S., Cinelli M.A., El-Sayed N.S., Huang H., Patel A., Silverman R.B., Yang S. Inhibition of interferon-gamma-stimulated melanoma progression by targeting neuronal nitric oxide synthase (nNOS). Sci Rep. 2022; 12(1): 1701. doi: 10.1038/s41598-022-05394-6.
33. Talmadge J.E., Black P.L., Tribble H., Pennington R., Bowersox O., Schneider M., Phillips H. Preclinical approaches to the treatment of metastatic disease: therapeutic properties of rH TNF, rM IFN-gamma, and rH IL-2. Drugs Exp Clin Res. 1987; 13(6): 327–37.
34. Giannopoulos A., Constantinides C., Fokaeas E., Stravodimos C., Giannopoulou M., Kyroudi A., Gounaris A. The immunomodulating efect of interferon-gamma intravesical instillations in preventing bladder cancer recurrence. Clin Cancer Res. 2003; 9(15): 5550–8.
35. Marth C., Windbichler G.H., Hausmaninger H., Petru E., Estermann K., Pelzer A., Mueller-Holzner E. Interferon-gamma in combination with carboplatin and paclitaxel as a safe and efective frst-line treatment option for advanced ovarian cancer: results of a phase I/II study. Int J Gynecol Cancer. 2006; 16(4): 1522–8. doi: 10.1111/j.1525-1438.2006.00622.x.
36. Пыльцин С.П., Златник Е.Ю., Лазутин Ю.Н., Сергостьянц Г.З., Закора Г.И., Лейман И.А., Анистратов П.А. Влияние ингарона на иммунный статус больных аденокарциномой легкого в процессе адъювантного лечения. Медицинская иммунология. 2014; 16(6): 559–66. doi: 10.15789/1563-0625-2014-6-559-566.
37. Арджа А.Ю., Непомнящая Е.М., Златник Е.Ю., Ульянова Е.П., Вереникина Е.В., Женило О.Е., Никитина В.П., Меньшенина А.П., Сагакянц А.Б., Черникова Е.Н., Якубова Д.Ю., Шульгина О.Г. Особенности экспрессии некоторых иммуногистохимических маркеров у больных раком яичников IIIC-IV стадии как критерий эффективности применения химиоиммунотерапии. Наука молодых. 2020; 8(4): 582–90. doi: 10.23888/HMJ202084582-590.
38. Thibaut R., Bost P., Milo I., Cazaux M., Lemaître F., Garcia Z., Amit I., Breart B., Cornuot C., Schwikowski B., Bousso P. Bystander IFN-γ activity promotes widespread and sustained cytokine signaling altering the tumor microenvironment. Nat Cancer. 2020; 1(3): 302–14. doi: 10.1038/s43018-020-0038-2.
39. Garris C.S., Arlauckas S.P., Kohler R.H., Trefny M.P., Garren S., Piot C., Engblom C., Pfrschke C., Siwicki M., Gungabeesoon J., Freeman G.J., Warren S.E., Ong S., Browning E., Twitty C.G., Pierce R.H., Le M.H., Algazi A.P., Daud A.I., Pai S.I., Zippelius A., Weissleder R., Pittet M.J. Successful Anti-PD-1 Cancer Immunotherapy Requires T Cell-Dendritic Cell Crosstalk Involving the Cytokines IFN-γ and IL-12. Immunity. 2018; 49(6): 1148–61. doi: 10.1016/j.immuni.2018.09.024.
40. Park A., Yang Y., Lee Y., Kim M.S., Park Y.J., Jung H., Kim T.D., Lee H.G., Choi I., Yoon S.R. Indoleamine-2,3-Dioxygenase in Thyroid Cancer Cells Suppresses Natural Killer Cell Function by Inhibiting NKG2D and NKp46 Expression via STAT Signaling Pathways. J Clin Med. 2019; 8(6): 842. doi: 10.3390/jcm8060842.
41. Xu Y.P., Lv L., Liu Y., Smith M.D., Li W.C., Tan X.M., Cheng M., Li Z., Bovino M., Aubé J., Xiong Y. Tumor suppressor TET2 promotes cancer immunity and immunotherapy efcacy. J Clin Invest. 2019; 129(10): 4316–31. doi: 10.1172/JCI129317.
42. Mimura K., Teh J.L., Okayama H., Shiraishi K., Kua L.F., Koh V., Smoot D.T., Ashktorab H., Oike T., Suzuki Y., Fazreen Z., Asuncion B.R., Shabbir A., Yong W.P., So J., Soong R., Kono K. PD-L1 expression is mainly regulated by interferon gamma associated with JAK-STAT pathway in gastric cancer. Cancer Sci. 2018; 109(1): 43–53. doi: 10.1111/cas.13424.
43. Sceneay J., Goreczny G.J., Wilson K., Morrow S., DeCristo M.J., Ubellacker J.M., Qin Y., Laszewski T., Stover D.G., Barrera V., Hutchinson J.N., Freedman R.A., Mittendorf E.A., McAllister S.S. Interferon Signaling Is Diminished with Age and Is Associated with Immune Checkpoint Blockade Efcacy in Triple-Negative Breast Cancer. Cancer Discov. 2019; 9(9): 1208–27. doi: 10.1158/2159-8290.CD-18-1454.
44. Gao J., Shi L.Z., Zhao H., Chen J., Xiong L., He Q., Chen T., Roszik J., Bernatchez C., Woodman S.E., Chen P.L., Hwu P., Allison J.P., Futreal A., Wargo J.A., Sharma P. Loss of IFN-γ Pathway Genes in Tumor Cells as a Mechanism of Resistance to Anti-CTLA-4 Therapy. Cell. 2016; 167(2): 397–404. doi: 10.1016/j.cell.2016.08.069.
45. Grasso C.S., Tsoi J., Onyshchenko M., Abril-Rodriguez G., Ross-Macdonald P., Wind-Rotolo M., Champhekar A., Medina E., Torrejon D.Y., Shin D.S., Tran P., Kim Y.J., Puig-Saus C., Campbell K., Vega-Crespo A., Quist M., Martignier C., Luke J.J., Wolchok J.D., Johnson D.B., Chmielowski B., Hodi F.S., Bhatia S., Sharfman W., Urba W.J., Slingluff C.L. Jr., Diab A., Haanen J.B.A.G., Algarra S.M., Pardoll D.M., Anagnostou V., Topalian S.L., Velculescu V.E., Speiser D.E., Kalbasi A., Ribas A. Conserved Interferon-γ Signaling Drives Clinical Response to Immune Checkpoint Blockade Therapy in Melanoma. Cancer Cell. 2020; 38(4): 500–15. doi: 10.1016/j.ccell.2020.08.005.
46. Zhang M., Huang L., Ding G., Huang H., Cao G., Sun X., Lou N., Wei Q., Shen T., Xu X., Cao L., Yan Q. Interferon gamma inhibits CXCL8-CXCR2 axis mediated tumor-associated macrophages tumor trafcking and enhances anti-PD1 efcacy in pancreatic cancer. J Immunother Cancer. 2020; 8(1). doi: 10.1136/jitc-2019-000308.
47. Zhang S., Kohli K., Black R.G., Yao L., Spadinger S.M., He Q., Pillarisetty V.G., Cranmer L.D., Van Tine B.A., Yee C., Pierce R.H., Riddell S.R., Jones R.L., Pollack S.M. Systemic Interferon-γ Increases MHC Class I Expression and T-cell Infltration in Cold Tumors: Results of a Phase 0 Clinical Trial. Cancer Immunol Res. 2019; 7(8): 1237–43. doi: 10.1158/2326-6066.CIR-18-0940.
48. Ayers M., Lunceford J., Nebozhyn M., Murphy E., Loboda A., Kaufman D.R., Albright A., Cheng J.D., Kang S.P., Shankaran V., Piha-Paul S.A., Yearley J., Seiwert T.Y., Ribas A., McClanahan T.K. IFN-γ-related mRNA profle predicts clinical response to PD-1 blockade. J Clin Invest. 2017; 127(8): 2930–40. doi: 10.1172/JCI91190.
49. Higgs B.W., Morehouse C.A., Streicher K., Brohawn P.Z., Pilataxi F., Gupta A., Ranade K. Interferon Gamma Messenger RNA Signature in Tumor Biopsies Predicts Outcomes in Patients with Non-Small Cell Lung Carcinoma or Urothelial Cancer Treated with Durvalumab. Clin Cancer Res. 2018; 24(16): 3857–66. doi: 10.1158/1078-0432.CCR-17-3451.
50. Liu L., Du X., Fang J., Zhao J., Guo Y., Zhao Y., Zou C., Yan X., Li W. Development of an Interferon Gamma Response-Related Signature for Prediction of Survival in Clear Cell Renal Cell Carcinoma. J Infamm Res. 2021; 14: 4969–85. doi: 10.2147/JIR.S334041.
51. Reijers I.L.M., Dimitriadis P., Rozeman E.A., Krijgsman O., Cornelissen S., Bosch L.J.W., Broeks A., Menzies A., van de Wiel B.A., Scolyer R.A., Long G.V., Blank C.U. The interferon-gamma (IFN-y) signature from baseline tumor material predicts pathologic response after neoadjuvant ipilimumab (IPI) + nivolumab (NIVO) in stage III melanoma. J Clin Oncol. 2022; 40(16): 9539. doi: 10.1200/JCO.2022.40.16_suppl.9539.
52. Cui C., Xu C., Yang W., Chi Z., Sheng X., Si L., Xie Y., Yu J., Wang S., Yu R., Guo J., Kong Y. Ratio of the interferon-γ signature to the immunosuppression signature predicts anti-PD-1 therapy response in melanoma. NPJ Genom Med. 2021; 6(1): 7. doi: 10.1038/s41525-021-00169-w.
53. Tecalco-Cruz A.C., Macías-Silva M., Ramírez-Jarquín J.O., Méndez-Ambrosio B. Identifcation of genes modulated by interferon gamma in breast cancer cells. Biochem Biophys Rep. 2021; 27. doi: 10.1016/j.bbrep.2021.101053.
54. Boutsikou E., Domvri K., Hardavella G., Tsiouda D., Zarogoulidis K., Kontakiotis T. Tumour necrosis factor, interferon-gamma and interleukins as predictive markers of antiprogrammed cell-death protein-1 treatment in advanced non-small cell lung cancer: a pragmatic approach in clinical practice. Ther Adv Med Oncol. 2018; 10: 1–8. doi: 10.1177/1758835918768238.
Рецензия
Для цитирования:
Илюшин А.Л., Богдашин И.В., Алексанян А.З., Новиков В.В., Ашрафян Л.А. Интерферон-γ и опухолевый рост. Сибирский онкологический журнал. 2023;22(4):118-127. https://doi.org/10.21294/1814-4861-2023-22-4-118-127
For citation:
Ilyushin A.L., Bogdashin I.V., Aleksanyan A.Z., Novikov V.V., Ashrafyan L.A. Interferon-γ and tumor growth. Siberian journal of oncology. 2023;22(4):118-127. (In Russ.) https://doi.org/10.21294/1814-4861-2023-22-4-118-127